Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530908

RESUMO

Adiponectin has vascular anti-inflammatory and protective effects. Whilst adiponectin is known to protect against the development of albuminuria, historically the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnC). In diabetes, eGlx dysfunction occurs before podocyte damage, hence we hypothesized that adiponectin could protect from eGlx damage to prevent early vascular damage in diabetic kidney disease (DKD). Globular adiponectin (gAd) activated AMPK signalling in human GEnC through AdipoR1. It significantly reduced eGlx shedding and the TNFα-mediated increase in syndecan-4 (SDC4) and MMP2 mRNA expression in GEnC in vitro. It protected against increased TNFα mRNA expression in glomeruli isolated from db/db mice, and genes associated with glycocalyx shedding (SDC4, MMP2 and MMP9). In addition, gAd protected against increased glomerular albumin permeability (Ps'alb) in glomeruli isolated from db/db mice, when administered to mice (i.p) and when applied directly to glomeruli (ex vivo). Ps'alb was inversely correlated with eGlx depth in vivo. In summary, adiponectin restored eGlx depth, which was correlated with improved glomerular barrier function, in diabetes.

2.
Cardiovasc Diabetol ; 23(1): 50, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302978

RESUMO

BACKGROUND: Diabetes mellitus is a chronic disease which is detrimental to cardiovascular health, often leading to secondary microvascular complications, with huge global health implications. Therapeutic interventions that can be applied to multiple vascular beds are urgently needed. Diabetic retinopathy (DR) and diabetic kidney disease (DKD) are characterised by early microvascular permeability changes which, if left untreated, lead to visual impairment and renal failure, respectively. The heparan sulphate cleaving enzyme, heparanase, has previously been shown to contribute to diabetic microvascular complications, but the common underlying mechanism which results in microvascular dysfunction in conditions such as DR and DKD has not been determined. METHODS: In this study, two mouse models of heparan sulphate depletion (enzymatic removal and genetic ablation by endothelial specific Exotosin-1 knock down) were utilized to investigate the impact of endothelial cell surface (i.e., endothelial glycocalyx) heparan sulphate loss on microvascular barrier function. Endothelial glycocalyx changes were measured using fluorescence microscopy or transmission electron microscopy. To measure the impact on barrier function, we used sodium fluorescein angiography in the eye and a glomerular albumin permeability assay in the kidney. A type 2 diabetic (T2D, db/db) mouse model was used to determine the therapeutic potential of preventing heparan sulphate damage using treatment with a novel heparanase inhibitor, OVZ/HS-1638. Endothelial glycocalyx changes were measured as above, and microvascular barrier function assessed by albumin extravasation in the eye and a glomerular permeability assay in the kidney. RESULTS: In both models of heparan sulphate depletion, endothelial glycocalyx depth was reduced and retinal solute flux and glomerular albumin permeability was increased. T2D mice treated with OVZ/HS-1638 had improved endothelial glycocalyx measurements compared to vehicle treated T2D mice and were simultaneously protected from microvascular permeability changes associated with DR and DKD. CONCLUSION: We demonstrate that endothelial glycocalyx heparan sulphate plays a common mechanistic role in microvascular barrier function in the eye and kidney. Protecting the endothelial glycocalyx damage in diabetes, using the novel heparanase inhibitor OVZ/HS-1638, effectively prevents microvascular permeability changes associated with DR and DKD, demonstrating a novel systemic approach to address diabetic microvascular complications.


Assuntos
Diabetes Mellitus Tipo 2 , Angiopatias Diabéticas , Nefropatias Diabéticas , Glucuronidase , Animais , Camundongos , Glicocálix/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/prevenção & controle , Heparitina Sulfato/metabolismo , Heparitina Sulfato/farmacologia , Albuminas/farmacologia , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/prevenção & controle , Angiopatias Diabéticas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo
4.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36749631

RESUMO

The glomerular endothelial glycocalyx (GEnGlx) forms the first part of the glomerular filtration barrier. Previously, we showed that mineralocorticoid receptor (MR) activation caused GEnGlx damage and albuminuria. In this study, we investigated whether MR antagonism could limit albuminuria in diabetes and studied the site of action. Streptozotocin-induced diabetic Wistar rats developed albuminuria, increased glomerular albumin permeability (Ps'alb), and increased glomerular matrix metalloproteinase (MMP) activity with corresponding GEnGlx loss. MR antagonism prevented albuminuria progression, restored Ps'alb, preserved GEnGlx, and reduced MMP activity. Enzymatic degradation of the GEnGlx negated the benefits of MR antagonism, confirming their dependence on GEnGlx integrity. Exposing human glomerular endothelial cells (GEnC) to diabetic conditions in vitro increased MMPs and caused glycocalyx damage. Amelioration of these effects confirmed a direct effect of MR antagonism on GEnC. To confirm relevance to human disease, we used a potentially novel confocal imaging method to show loss of GEnGlx in renal biopsy specimens from patients with diabetic nephropathy (DN). In addition, patients with DN randomized to receive an MR antagonist had reduced urinary MMP2 activity and albuminuria compared with placebo and baseline levels. Taken together, our work suggests that MR antagonists reduce MMP activity and thereby preserve GEnGlx, resulting in reduced glomerular permeability and albuminuria in diabetes.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ratos , Animais , Humanos , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Albuminúria/tratamento farmacológico , Células Endoteliais/metabolismo , Receptores de Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/uso terapêutico , Glicocálix/metabolismo , Ratos Wistar , Nefropatias Diabéticas/metabolismo , Diabetes Mellitus/metabolismo
5.
Clin Sci (Lond) ; 135(24): 2667-2689, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34807265

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a broad range of clinical responses including prominent microvascular damage. The capacity of SARS-CoV-2 to infect vascular cells is still debated. Additionally, the SARS-CoV-2 Spike (S) protein may act as a ligand to induce non-infective cellular stress. We tested this hypothesis in pericytes (PCs), which are reportedly reduced in the heart of patients with severe coronavirus disease-2019 (COVID-19). Here we newly show that the in vitro exposure of primary human cardiac PCs to the SARS-CoV-2 wildtype strain or the α and δ variants caused rare infection events. Exposure to the recombinant S protein alone elicited signalling and functional alterations, including: (1) increased migration, (2) reduced ability to support endothelial cell (EC) network formation on Matrigel, (3) secretion of pro-inflammatory molecules typically involved in the cytokine storm, and (4) production of pro-apoptotic factors causing EC death. Next, adopting a blocking strategy against the S protein receptors angiotensin-converting enzyme 2 (ACE2) and CD147, we discovered that the S protein stimulates the phosphorylation/activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) through the CD147 receptor, but not ACE2, in PCs. The neutralisation of CD147, either using a blocking antibody or mRNA silencing, reduced ERK1/2 activation, and rescued PC function in the presence of the S protein. Immunoreactive S protein was detected in the peripheral blood of infected patients. In conclusion, our findings suggest that the S protein may prompt PC dysfunction, potentially contributing to microvascular injury. This mechanism may have clinical and therapeutic implications.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Basigina/metabolismo , Miocárdio/enzimologia , Pericitos/enzimologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , Células CACO-2 , Morte Celular , Criança , Pré-Escolar , Citocinas/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Miocárdio/citologia , Pericitos/virologia , Cultura Primária de Células , Adulto Jovem
6.
Cancers (Basel) ; 12(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825402

RESUMO

Cutaneous viral infections occur in a background of near continual exposure to environmental genotoxins, like UV radiation in sunlight. Failure to repair damaged DNA is an established driver of tumorigenesis and substantial cellular resources are devoted to repairing DNA lesions. Beta-human papillomaviruses (ß-HPVs) attenuate DNA repair signaling. However, their role in human disease is unclear. Some have proposed that ß-HPV promotes tumorigenesis, while others suggest that ß-HPV protects against skin cancer. Most of the molecular evidence that ß-HPV impairs DNA repair has been gained via characterization of the E6 protein from ß-HPV 8 (ß-HPV 8E6). Moreover, ß-HPV 8E6 hinders DNA repair by binding and destabilizing p300, a transcription factor for multiple DNA repair genes. By reducing p300 availability, ß-HPV 8E6 attenuates a major double strand DNA break (DSB) repair pathway, homologous recombination. Here, ß-HPV 8E6 impairs another DSB repair pathway, non-homologous end joining (NHEJ). Specifically, ß-HPV 8E6 acts by attenuating DNA-dependent protein kinase (DNA-PK) activity, a critical NHEJ kinase. This includes DNA-PK activation and the downstream of steps in the pathway associated with DNA-PK activity. Notably, ß-HPV 8E6 inhibits NHEJ through p300 dependent and independent means. Together, these data expand the known genome destabilizing capabilities of ß-HPV 8E6.

7.
Kidney Int ; 97(5): 951-965, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32037077

RESUMO

The endothelial glycocalyx is a key component of the glomerular filtration barrier. We have shown that matrix metalloproteinase (MMP)-mediated syndecan 4 shedding is a mechanism of glomerular endothelial glycocalyx damage in vitro, resulting in increased albumin permeability. Here we sought to determine whether this mechanism is important in early diabetic kidney disease, by studying streptozotocin-induced type 1 diabetes in DBA2/J mice. Diabetic mice were albuminuric, had increased glomerular albumin permeability and endothelial glycocalyx damage. Syndecan 4 mRNA expression was found to be upregulated in isolated glomeruli and in flow cytometry-sorted glomerular endothelial cells. In contrast, glomerular endothelial luminal surface syndecan 4 and Marasmium oreades agglutinin lectin labelling measurements were reduced in the diabetic mice. Similarly, syndecan 4 protein expression was significantly decreased in isolated glomeruli but increased in plasma and urine, suggesting syndecan 4 shedding. Mmp-2, 9 and 14 mRNA expression were upregulated in isolated glomeruli, suggesting a possible mechanism of glycocalyx damage and albuminuria. We therefore characterised in detail the activity of MMP-2 and 9 and found significant increases in kidney cortex, plasma and urine. Treatment with MMP-2/9 inhibitor I for 21 days, started six weeks after diabetes induction, restored endothelial glycocalyx depth and coverage and attenuated diabetes-induced albuminuria and reduced glomerular albumin permeability. MMP inhibitor treatment significantly attenuated glomerular endothelial and plasma syndecan 4 shedding and inhibited plasma MMP activity. Thus, our studies confirm the importance of MMPs in endothelial glycocalyx damage and albuminuria in early diabetes and demonstrate that this pathway is amenable to therapeutic intervention. Hence, treatments targeted at glycocalyx protection by MMP inhibition may be of benefit in diabetic kidney disease.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Células Endoteliais , Barreira de Filtração Glomerular , Glicocálix , Metaloproteinases da Matriz , Camundongos , Sindecana-4/genética
8.
PLoS One ; 14(9): e0222381, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513690

RESUMO

We describe the epidemiological characteristics, pattern of circulation, and geographical distribution of influenza B viruses and its lineages using data from the Global Influenza B Study. We included over 1.8 million influenza cases occurred in thirty-one countries during 2000-2018. We calculated the proportion of cases caused by influenza B and its lineages; determined the timing of influenza A and B epidemics; compared the age distribution of B/Victoria and B/Yamagata cases; and evaluated the frequency of lineage-level mismatch for the trivalent vaccine. The median proportion of influenza cases caused by influenza B virus was 23.4%, with a tendency (borderline statistical significance, p = 0.060) to be higher in tropical vs. temperate countries. Influenza B was the dominant virus type in about one every seven seasons. In temperate countries, influenza B epidemics occurred on average three weeks later than influenza A epidemics; no consistent pattern emerged in the tropics. The two B lineages caused a comparable proportion of influenza B cases globally, however the B/Yamagata was more frequent in temperate countries, and the B/Victoria in the tropics (p = 0.048). B/Yamagata patients were significantly older than B/Victoria patients in almost all countries. A lineage-level vaccine mismatch was observed in over 40% of seasons in temperate countries and in 30% of seasons in the tropics. The type B virus caused a substantial proportion of influenza infections globally in the 21st century, and its two virus lineages differed in terms of age and geographical distribution of patients. These findings will help inform health policy decisions aiming to reduce disease burden associated with seasonal influenza.


Assuntos
Vírus da Influenza B/patogenicidade , Influenza Humana/epidemiologia , Epidemias/história , Epidemias/estatística & dados numéricos , Monitoramento Epidemiológico , Feminino , História do Século XXI , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Vírus da Influenza B/metabolismo , Vacinas contra Influenza/imunologia , Influenza Humana/história , Masculino , Vigilância da População/métodos , Estações do Ano
9.
Biorheology ; 56(2-3): 163-179, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156139

RESUMO

The endothelial glycocalyx (eGlx) constitutes the first barrier to protein in all blood vessels. This is particularly noteworthy in the renal glomerulus, an ultrafiltration barrier. Leakage of protein, such as albumin, across glomerular capillaries results in albumin in the urine (albuminuria). This is a hall mark of kidney disease and can reflect loss of blood vessel integrity in microvascular beds elsewhere. We discuss evidence demonstrating that targeted damage to the glomerular eGlx results in increased glomerular albumin permeability. EGlx is lost in diabetes and experimental models demonstrate loss from glomerular endothelial cells. Vascular endothelial growth factor (VEGF)A is upregulated in early diabetes, which is associated with albuminuria. Treatment with paracrine growth factors such as VEGFC, VEGF165b and angiopoietin-1 can modify VEGFA signalling, rescue albumin permeability and restore glomerular eGlx in models of diabetes. Manipulation of VEGF receptor 2 signalling, or a common eGlx biosynthesis pathway by these growth factors, may protect and restore the eGlx layer. This would help to direct future therapeutics in diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/terapia , Células Endoteliais/metabolismo , Glicocálix/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Animais , Células Endoteliais/efeitos dos fármacos , Barreira de Filtração Glomerular/efeitos dos fármacos , Barreira de Filtração Glomerular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem
10.
Diabetes ; 68(1): 172-187, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30389746

RESUMO

Elevated levels of vascular endothelial growth factor (VEGF) A are thought to cause glomerular endothelial cell (GEnC) dysfunction and albuminuria in diabetic nephropathy. We hypothesized that VEGFC could counteract these effects of VEGFA to protect the glomerular filtration barrier and reduce albuminuria. Isolated glomeruli were stimulated ex vivo with VEGFC, which reduced VEGFA- and type 2 diabetes-induced glomerular albumin solute permeability (Ps'alb). VEGFC had no detrimental effect on glomerular function in vivo when overexpression was induced locally in podocytes (podVEGFC) in otherwise healthy mice. Further, these mice had reduced glomerular VEGFA mRNA expression, yet increased glomerular VEGF receptor heterodimerization, indicating differential signaling by VEGFC. In a model of type 1 diabetes, the induction of podVEGFC overexpression reduced the development of hypertrophy, albuminuria, loss of GEnC fenestrations and protected against altered VEGF receptor expression. In addition, VEGFC protected against raised Ps'alb by endothelial glycocalyx disruption in glomeruli. In summary, VEGFC reduced the development of diabetic nephropathy, prevented VEGF receptor alterations in the diabetic glomerulus, and promoted both glomerular protection and endothelial barrier function. These important findings highlight a novel pathway for future investigation in the treatment of diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/metabolismo , Animais , Western Blotting , Células Cultivadas , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Nefropatias Diabéticas/genética , Imunofluorescência , Genótipo , Humanos , Imunoprecipitação , Podócitos/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
J Vis Exp ; (136)2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29939192

RESUMO

The repair of double-stranded breaks (DSBs) in DNA is a highly coordinated process, necessitating the formation and resolution of multi-protein repair complexes. This process is regulated by a myriad of proteins that promote the association and disassociation of proteins to these lesions. Thanks in large part to the ability to perform functional screens of a vast library of proteins, there is a greater appreciation of the genes necessary for the double-strand DNA break repair. Often knockout or chemical inhibitor screens identify proteins involved in repair processes by using increased toxicity as a marker for a protein that is required for DSB repair. Although useful for identifying novel cellular proteins involved in maintaining genome fidelity, functional analysis requires the determination of whether the protein of interest promotes localization, formation, or resolution of repair complexes. The accumulation of repair proteins can be readily detected as distinct nuclear foci by immunofluorescence microscopy. Thus, association and disassociation of these proteins at sites of DNA damage can be accessed by observing these nuclear foci at representative intervals after the induction of double-strand DNA breaks. This approach can also identify mis-localized repair factor proteins, if repair defects do not simultaneously occur with incomplete delays in repair. In this scenario, long-lasting double-strand DNA breaks can be engineered by expressing a rare cutting endonuclease (e.g., I-SceI) in cells where the recognition site for the said enzyme has been integrated into the cellular genome. The resulting lesion is particularly hard to resolve as faithful repair will reintroduce the enzyme's recognition site, prompting another round of cleavage. As a result, differences in the kinetics of repair are eliminated. If repair complexes are not formed, localization has been impeded. This protocol describes the methodology necessary to identify changes in repair kinetics as well as repair protein localization.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Microscopia de Fluorescência/métodos , Humanos
12.
J Infect Dis ; 218(2): 282-290, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29471356

RESUMO

Pneumocystis has a large multicopy gene family encoding proteins related to the major surface glycoprotein (Msg), whose functions are largely unknown. We expressed one such protein of Pneumocystis murina, p57, which is encoded by 3 highly conserved genes, and demonstrated by immunoblot that immunocompetent mice that were immunized with crude Pneumocystis antigens or that had cleared Pneumocystis infection developed antibodies to p57. Using hyperimmune anti-p57 serum combined with immunolabeling, we found that p57 was expressed by small trophic forms and intracystic bodies, whereas it was not expressed on larger trophic forms or externally by cysts. Expression of p57 and Msg by trophic forms was largely mutually exclusive. Treatment of infected animals with caspofungin inhibited cyst formation and markedly decreased p57 expression. While p57 expression was seen in immunocompetent mice infected with Pneumocystis, immunization with recombinant p57 did not result in altered cytokine expression by lymphocytes or in diminished infection in such mice. Thus, p57 appears to be a stage-specific antigen of Pneumocystis that is expressed on intracystic bodies and young trophic forms and may represent a mechanism to conserve resources in organisms during periods of limited exposure to host immune responses.


Assuntos
Anticorpos Antifúngicos/sangue , Antígenos de Fungos/imunologia , Infecções por Pneumocystis/imunologia , Pneumocystis/imunologia , Animais , Antígenos de Fungos/genética , Western Blotting , Modelos Animais de Doenças , Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
J Alzheimers Dis ; 56(3): 1119-1126, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28106554

RESUMO

BACKGROUND: There is growing evidence that proactive semantic interference (PSI) and failure to recover from PSI may represent early features of Alzheimer's disease (AD). OBJECTIVE: This study investigated the association between PSI, recovery from PSI, and reduced MRI volumes in AD signature regions among cognitively impaired and unimpaired older adults. METHODS: Performance on the LASSI-L (a novel test of PSI and recovery from PSI) and regional brain volumetric measures were compared between 38 cognitively normal (CN) elders and 29 older participants with amnestic mild cognitive impairment (MCI). The relationship between MRI measures and performance on the LASSI-L as well as traditional memory and non-memory cognitive measures was also evaluated in both diagnostic groups. RESULTS: Relative to traditional neuropsychological measures, MCI patients' failure to recover from PSI was associated with reduced volumes in the hippocampus (rs = 0.48), precuneus (rs = 0.50); rostral middle frontal lobules (rs = 0.54); inferior temporal lobules (rs = 0.49), superior parietal lobules (rs = 0.47), temporal pole (rs = 0.44), and increased dilatation of the inferior lateral ventricle (rs = -0.49). For CN elders, only increased inferior lateral ventricular size was associated with vulnerability to PSI (rs = -0.49), the failure to recover from PSI (rs = -0.57), and delayed recall on the Hopkins Verbal Learning Test-Revised (rs = -0.48). DISCUSSION: LASSI-L indices eliciting failure to recover from PSI were more highly associated with more MRI regional biomarkers of AD than other traditional cognitive measures. These results as well as recent amyloid imaging studies with otherwise cognitively normal subjects, suggest that recovery from PSI may be a sensitive marker of preclinical AD and deserves further investigation.


Assuntos
Envelhecimento/psicologia , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/psicologia , Rememoração Mental , Semântica , Idoso , Envelhecimento/patologia , Doença de Alzheimer , Atrofia , Cognição , Feminino , Humanos , Aprendizagem , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Tamanho do Órgão
14.
Neuropharmacology ; 90: 1-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25445490

RESUMO

Clinical evidence indicates brain serotonin (5-HT) stores and neurotransmission may be inadequate in subpopulations of individuals with autism, and this may contribute to characteristically impaired social behaviors. Findings that depletion of the 5-HT precursor tryptophan (TRP) worsens autism symptoms support this hypothesis. Yet dietetic studies show and parents report that many children with autism consume less TRP than peers. To measure the impact of dietary TRP content on social behavior, we administered either diets devoid of TRP, with standard TRP (0.2 g%), or with 1% added TRP (1.2 g%) overnight to three mouse strains. Of these, BTBRT(+)Itpr3(tf)/J and 129S1/SvImJ consistently exhibit low preference for social interaction relative to C57BL/6. We found that TRP depletion reduced C57BL/6 and 129S social interaction preference, while TRP enhancement improved BTBR sociability (p < 0.05; N = 8-10). Subsequent marble burying did not differ among diets or strains. After behavior tests, brain TRP levels and plasma corticosterone were higher in TRP enhanced C57BL/6 and BTBR, while 5-HT levels were reduced in all strains by TRP depletion (p < 0.05; N = 4-10). Relative hyperactivity of BTBR and hypoactivity of 129S, evident in self-grooming and chamber entries during sociability tests, were uninfluenced by dietary TRP. Our findings demonstrate mouse sociability and brain 5-HT turnover are reduced by acute TRP depletion, and can be enhanced by TRP supplementation. This outcome warrants further basic and clinical studies employing biomarker combinations such as TRP metabolism and 5-HT regulated hormones to characterize conditions wherein TRP supplementation may best ameliorate sociability deficits.


Assuntos
Encéfalo/metabolismo , Corticosterona/sangue , Serotonina/metabolismo , Comportamento Social , Triptofano/administração & dosagem , Animais , Dieta , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Atividade Motora/fisiologia , Especificidade da Espécie
15.
J Gen Virol ; 95(Pt 9): 1958-1968, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24899153

RESUMO

Here, we report the isolation and functional characterization of mAbs against two murine norovirus (MNV) strains, MNV-1 and WU20, which were isolated following oral infection of mice. The mAbs were screened for reactivity against the respective homologous and heterologous MNV strain by ELISA. Selected mAbs were of IgA, IgG1, IgG2a or IgG2b isotype and showed a range of Western blot reactivities from non-binding to strong binding, suggesting recognition of conformational and linear epitopes. Some of the anti-MNV-1 antibodies neutralized both MNV-1 and WU20 infections in culture and in mice, but none of the anti-WU20 mAbs neutralized either virus. The non-neutralizing anti-MNV-1 IgG2b antibody 5C4.10 was mapped to the S domain of the MNV-1 capsid, whilst the epitopes of the neutralizing anti-MNV-1 IgA antibodies 2D3.7 and 4F9.4 were mapped to the P domain. Generation of neutralization escape viruses showed that two mutations (V339I and D348E) in the C'D' loop of the MNV-1 P domain mediated escape from mAb 2D3.7 and 4F9.4 neutralization. These findings broaden the known neutralizing epitopes of MNV to the main surface-exposed loops of the P domain. In addition, the current panel of antibodies provides valuable reagents for studying norovirus biology and development of diagnostic tools.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Norovirus/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/genética , Especificidade de Anticorpos , Infecções por Caliciviridae/imunologia , Capsídeo/imunologia , Linhagem Celular , Epitopos/imunologia , Células HEK293 , Humanos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Dados de Sequência Molecular , Mutação , Testes de Neutralização , Norovirus/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Carga Viral
16.
J Virol ; 88(8): 4543-57, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24501415

RESUMO

UNLABELLED: New human norovirus strains emerge every 2 to 3 years, partly due to mutations in the viral capsid that allow escape from antibody neutralization and herd immunity. To understand how noroviruses evolve antibody resistance, we investigated the structural basis for the escape of murine norovirus (MNV) from antibody neutralization. To identify specific residues in the MNV-1 protruding (P) domain of the capsid that play a role in escape from the neutralizing monoclonal antibody (MAb) A6.2, 22 recombinant MNVs were generated with amino acid substitutions in the A'B' and E'F' loops. Six mutations in the E'F' loop (V378F, A382K, A382P, A382R, D385G, and L386F) mediated escape from MAb A6.2 neutralization. To elucidate underlying structural mechanisms for these results, the atomic structure of the A6.2 Fab was determined and fitted into the previously generated pseudoatomic model of the A6.2 Fab/MNV-1 virion complex. Previously, two distinct conformations, A and B, of the atomic structures of the MNV-1 P domain were identified due to flexibility in the two P domain loops. A superior stereochemical fit of the A6.2 Fab to the A conformation of the MNV P domain was observed. Structural analysis of our observed escape mutants indicates changes toward the less-preferred B conformation of the P domain. The shift in the structural equilibrium of the P domain toward the conformation with poor structural complementarity to the antibody strongly supports a unique mechanism for antibody escape that occurs via antigen flexibility instead of direct antibody-antigen binding. IMPORTANCE: Human noroviruses cause the majority of all nonbacterial gastroenteritis worldwide. New epidemic strains arise in part by mutations in the viral capsid leading to escape from antibody neutralization. Herein, we identify a series of point mutations in a norovirus capsid that mediate escape from antibody neutralization and determine the structure of a neutralizing antibody. Fitting of the antibody structure into the virion/antibody complex identifies two conformations of the antibody binding domain of the viral capsid: one with a superior fit and the other with an inferior fit to the antibody. These data suggest a unique mode of antibody neutralization. In contrast to other viruses that largely escape antibody neutralization through direct disruption of the antibody-virus interface, we identify mutations that acted indirectly by limiting the conformation of the antibody binding loop in the viral capsid and drive the antibody binding domain into the conformation unable to be bound by the antibody.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Caliciviridae/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Norovirus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/genética , Linhagem Celular , Humanos , Evasão da Resposta Imune , Camundongos , Camundongos Knockout , Testes de Neutralização , Norovirus/química , Norovirus/genética
17.
PLoS Pathog ; 8(8): e1002898, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952448

RESUMO

BK polyomavirus (BKPyV) is an emerging pathogen whose reactivation causes severe disease in transplant patients. Unfortunately, there is no specific anti-BKPyV treatment available, and host cell components that affect the infection outcome are not well characterized. In this report, we examined the relationship between BKPyV productive infection and the activation of the cellular DNA damage response (DDR) in natural host cells. Our results showed that both the ataxia-telangiectasia mutated (ATM)- and ATM and Rad-3-related (ATR)-mediated DDR were activated during BKPyV infection, accompanied by the accumulation of polyploid cells. We assessed the involvement of ATM and ATR during infection using small interfering RNA (siRNA) knockdowns. ATM knockdown did not significantly affect viral gene expression, but reduced BKPyV DNA replication and infectious progeny production. ATR knockdown had a slightly more dramatic effect on viral T antigen (TAg) and its modified forms, DNA replication, and progeny production. ATM and ATR double knockdown had an additive effect on DNA replication and resulted in a severe reduction in viral titer. While ATM mainly led to the activation of pChk2 and ATR was primarily responsible for the activation of pChk1, knockdown of all three major phosphatidylinositol 3-kinase-like kinases (ATM, ATR, and DNA-PKcs) did not abolish the activation of γH2AX during BKPyV infection. Finally, in the absence of ATM or ATR, BKPyV infection caused severe DNA damage and aberrant TAg staining patterns. These results indicate that induction of the DDR by BKPyV is critical for productive infection, and that one of the functions of the DDR is to minimize the DNA damage which is generated during BKPyV infection.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Vírus BK/fisiologia , Dano ao DNA , Infecções por Polyomavirus/virologia , Infecções Tumorais por Vírus/virologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Vírus BK/genética , Ciclo Celular , Células Cultivadas , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Replicação do DNA , Técnicas de Silenciamento de Genes , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Moleculares , Poliploidia , RNA Interferente Pequeno , Transdução de Sinais , Replicação Viral
18.
mBio ; 2(1): e00281-10, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21304169

RESUMO

BK virus (BKV) is the causative agent for polyomavirus-associated nephropathy, a severe disease found in renal transplant patients due to reactivation of a persistent BKV infection. BKV replication relies on the interactions of BKV with many nuclear components, and subnuclear structures such as promyelocytic leukemia nuclear bodies (PML-NBs) are known to play regulatory roles during a number of DNA virus infections. In this study, we investigated the relationship between PML-NBs and BKV during infection of primary human renal proximal tubule epithelial (RPTE) cells. While the levels of the major PML-NB protein components remained unchanged, BKV infection of RPTE cells resulted in dramatic alterations in both the number and the size of PML-NBs. Furthermore, two normally constitutive components of PML-NBs, Sp100 and hDaxx, became dispersed from PML-NBs. To define the viral factors responsible for this reorganization, we examined the cellular localization of the BKV large tumor antigen (TAg) and viral DNA. TAg colocalized with PML-NBs during early infection, while a number of BKV chromosomes were adjacent to PML-NBs during late infection. We demonstrated that TAg alone was not sufficient to reorganize PML-NBs and that active viral DNA replication is required. Knockdown of PML protein did not dramatically affect BKV growth in culture. BKV infection, however, was able to rescue the growth of an ICP0-null herpes simplex virus 1 mutant whose growth defect was partially due to its inability to disrupt PML-NBs. We hypothesize that the antiviral functions of PML-NBs are inactivated through reorganization during normal BKV infection.


Assuntos
Vírus BK/fisiologia , Corpos de Inclusão Intranuclear/virologia , Proteínas Nucleares/metabolismo , Infecções por Polyomavirus/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Infecções Tumorais por Vírus/metabolismo , Vírus BK/genética , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Humanos , Corpos de Inclusão Intranuclear/metabolismo , Proteínas Nucleares/genética , Infecções por Polyomavirus/genética , Infecções por Polyomavirus/virologia , Proteína da Leucemia Promielocítica , Transporte Proteico , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/virologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...